Are Post-Glacial Rebound Model Predictions Consistent with the Global Space-Geodetic Secular Velocity Field?

H.-P. Plag, C. Kreemer Nevada Bureau of Mines and Geology and Seismological Laboratory University of Nevada, Reno, Nevada, USA D. Lavallee University of Newcastle, U.K.

Are Post-Glacial Rebound Model Predictions Consistent with the Global Space-Geodetic Secular Velocity Field?

- Comparison of PGS model predictions
- The secular velocity fields
- Separating rigid body motion from PGS
- Is there consistency between observation and model predictions?

Submission of PGR predictions to the IERS Special Bureau for Loading. Available at http://www.sbl.statkart.no.

Model	Author	Ice	Earth
VM2	Peltier	ICE-5G V2	Depth-dependent parameters,
	(2004, 2005)		90 km lithosphere
VM4	Peltier	ICE-5G V2	Same as VM2 but lower viscos-
	(2004, 2005)		ity in upper mantle
REF	Schotman et	ICE-3G	5 homogeneous layers, 98 km
	al. (2005)		lithosphere, higher viscosity in
			lower mantle
ALT	Schotman et	mod. ICE-3G	Same as REF, but homoge-
	al. (2005)		neous viscosity in mantle
JXM	Mitrovica.	ICE-3G	4 homogeneous layers, 120 km
	(Milne et al.,		lithosphere, high viscosity in
	1999)		lower mantle.

All models are spherically symmetric.

3-D displacements

Cross correlations

Up Component:

	VM2	VM4	REF	ALT	JXM
VM2	1.000	0.959	0.737	0.609	0.808
VM4	0.959	1.000	0.618	0.579	0.715
REF	0.737	0.618	1.000	0.663	0.956
ALT	0.609	0.579	0.663	1.000	0.689
JXM	0.808	0.715	0.956	0.689	1.000

Horizontal displacement vectors:

	VM2	VM4	REF	ALT	JXM
VM2	1.000	0.947	0.279	-0.252	0.368
VM4	0.947	1.000	0.124	-0.412	0.132
REF	0.279	0.124	1.000	0.551	0.811
ALT	-0.252	-0.412	0.551	1.000	0.673
JXM	0.368	0.132	0.811	0.673	1.000

3-D displacement vectors:

	VM2	VM4	REF	ALT	JXM
VM2	1.000	0.955	0.637	0.447	0.712
VM4	0.955	1.000	0.504	0.382	0.580
REF	0.637	0.504	1.000	0.652	0.929
ALT	0.447	0.382	0.652	1.000	0.679
JXM	0.712	0.580	0.929	0.679	1.000

Normalized Scalar Product of 3-D Displacements for VM4 and the Other Models

The Secular Velocity Field

- Total of 376 points
- Combination of weekly global and regional solutions provide by IGS analysis centers

```
• 1999 - 2005
```

The Secular Velocity Field

- 5 X 5 degrees
- Total of 222 grids elements
- 78 elements with multiple values

Separating rigid body motion from PGS

Standard approach:

$$\vec{V}(\vec{X}) = \vec{\Omega} \times \vec{X}$$

 \vec{V} : secular velocity, \vec{X} : position, $\vec{\Omega}$: rigid plate rotation.

Plag et al. (2002):

$$\vec{V}(\vec{X}) = \vec{\Omega} \times \vec{X} + \sum_{i=1}^{N} \vec{V}_i(\vec{X})$$

 \vec{V}_i : velocity due to i-th geophyscial processes.

Kierulf et al. (2003): Significantly improved velocity field for Eurasian plate if PGR is taken into account.

Here: Extension to more PGR predictions and all major plates.

$$\vec{V}_{\text{horizontal}} = \vec{\Omega} \times \vec{X} + \gamma \cdot \vec{V}_{\text{horizontal}}^{(\text{PGR})}$$

We consider three cases: (1) no PGR, (2) γ fixed to 1, (3) γ and $\vec{\Omega}$ estimated.

Separating rigid body motion from PGS

Separating rigid body motion from PGS

Is there consistency between observation and model predictions?

- Regional intermodel differences larger than the uncertainties in the observed velocity field, particularly for North America and Eurasia.
- Space-geodetic observations provide valuable constraints for these models.
- ICE-5G-based predictions inconsistent with the observed velocity field in North America.
- Accounting for the PGR signal in the determination of the rigid body rotation improves the estimates for N.A. and Eurasia.