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Summary

We consider the modular approach to the modeling of Earth’s rotation developed recently and discuss some
improvements of the model. In this approach, the Earth is described by a number of mutually interacting
subsystems which all have their own dynamics. The subsystems geometrically represent distinct layers of the
Earth. As a result of their dynamics and interaction, these layers deform and move relative to one another.
This situation raises the question what frames of reference are appropriate for the description of the distinct
subsystems. We argue that each subsystem should be described in its own “internal’ frame of reference adapted
to the needs of its particular physics. In addition there must be a global frame of reference for the whole system
in which Earth’s rotation as an integral quantity of the whole system is defined and which also serves for the
description of interactions of distinct subsystems.



1 Introduction

Modeling of the Earth focusing on mechanical prop-
erties of the geosphere generally attempts to describe
the whole Earth by a single system of equations spe-
cialized for specific phenomena (see e.g. LAMBECK,
1988; WAHR, 1981 for rotation and loading defor-
mations, respectively). In order to be feasible, this
approach requires a high degree of simplification and
many interactions and feedbacks have to be neglected.
Consequently, even the most advanced geophysical
models presently available are highly simplified and,
moreover, specialized for the description of specific
phenomena (such as nutation, Earth tides, surface de-
formations, geoid anomalies, glacial loading).

Over the past decades, the development of geophysi-
cal and geodetic observations techniques (in particular,
space-geodetic methods such as VLBI, SLR and GPS
and absolute and relative gravimetry) has pushed ob-
servational accuracies far beyond the limits of these
geophysical models. Moreover, the most advanced
observation techniques are increasingly applied to the
study of global change phenomena, where specific
contributions to mass movements or changes in the dy-
namics of the system need to be isolated in the obser-
vations (for examples, see WAHR AND HAN, 1997;
PELTIER AND JIANG, 1997).

The accuracy of the isolated signal strongly depends
on the quality of the geophysical models used to cor-
rect for known effects in the observations. Thus, the
status of the geophysical models is a limiting factor
in the understanding of the observation, the isolation
of relevant signals, and the improvement of the obser-
vational techniques themselves (for a comprehensive
discussion, see PLAG et al., 1998).

Recently, Jiuttner and Plag (1998) have developed a
modular approach to the modeling of Earth’s rotation.
In this modular approach to the dynamics of the ro-
tating Earth, the Earth is represented by a number of
physically defined subsystems coupled to each other
both by boundary conditions and far-field interactions.
Thereby, different subsystems are described each on
its own by dynamical equations.

Couplings between different subsystems in this ap-
proach are defined as physically meaningful quanti-
ties, e.g. forces, moments or fields. Thus, they are
independent of the particular structure and dynamics
of the subsystems. There might be, moreover, external
excitations acting on one or several particular subsys-
tems such as for instance a tidal potential.

Unlike a uniform description of the rotating planet as
a whole, the modular approach to planetary dynamics
requires direct time domain integration (see JUTTNER
AND PLAG, 1998). In the modular approach, the sys-
tem is integrated as an initial value problem.

Such a modular approach allows for successive sophis-
tications individually inside each of the subsystems
without requiring any changes in the other subsystems.
The only demands on the mathematical description of
dynamics of a subsystem are that it has to supply the
other subsystems with time-dependent values of the
prescribed physical coupling parameters and that it has
to work with such coupling parameters supplied to it
by other subsystems. Of course, special attention has
to be paid to the definition of the subsystems and their
interactions right at the outset. Indeed, the isolation of
subsystems of the planet and convention on the kind
of their mutual interactions defines the structure of the
modular theory.

2 Development of the model

The validity and feasibility of the modular approach
has been demonstrated by a simple model based on
Euler-Liouville equations for mantle and core (see
JUTTNER AND PLAG, 1998). The structure of this
first version of a Dynamical I ntegrated Modular Earth
Rotation System (DIMERS-V1) is shown in figure 1
below. The model consists of two quasi rigidly rotat-
ing shells, core and mantle. The crust is included in the
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Figure 1. Subsystems and interactions of the initial version of the
system model DIMERS-V1. The boxes represent the
distinct subsystems and modules and an arrow indicates
an action of a subsystem on the subsystem to which it
points.



Table 1: Periods in sidereal days and quality factors of the Chan-
dler wobble calculated with DIMERS-V1 for different
ocean models and a typical choice of parameters.

ocean Tow Qcw
none 411.862d 67.2226
global 454.725d  60.8974

ETOPOS5 441.447d 62.7257

mantle subsystem. An atmosphere and an ocean have
been added to the model. The atmosphere subsystem
represents measured or synthetic pressure data. The
ocean has been taken to be in equilibrium with atmo-
spheric pressure, varying rotational and gravitational
potential and sea floor elevations. Its coast lines have
been extracted from the data set ETOPO5.

Deformations have been treated on the basis of static
Love numbers for a spherically symmetric and non-
rotating planet. This treatment of deformations de-
viating from the concept of subsystems with self-
contained dynamics, however, has forced the addition
of an artificial deformation module to DIMERS-V1. It
does not represent a physically defined subsystem and
the deformation of the physical subsystems appear as
artificial interactions with the deformation module.

As may be expected from the simple structure of sub-
systems of DIMERS-V1, this model shows two ro-
tational eigenmodes, the Chandler wobble and the
nearly diurnal free wobble. The period of the Chan-
dler wobble in this model is about 441 sidereal days
depending slightly on the coupling parameters chosen.
This period, however, is seriously influenced by the
ocean model as may be seen from table 1 (table 3 of
JUTTNER AND PLAG, 1998).

The model is currently being improved to include a
solid inner and a fluid outer core. Now, deformations
are treated dynamically within any deformable subsys-
tem separately. This second version DIMERS-V2 of
the model also has a module representing the tidal po-
tential. Figure 2 shows the structure of DIMERS-V2.
While DIMERS-V1 is based on the balance of the total
angular momentums of the subsystems, DIMERS-V2
is defined by continuum mechanical equations of mo-
tion within mantle, inner and outer core.

The inner core and the subsystem of mantle and crust,
for brevity henceforth called ‘mantle’, are now going
to be described in Lagrangian coordinates by the the-
ory of viscoelasticity. If the rheological models char-
acterizing the viscoelastic solids of mantle and inner
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Figure2: Structure of the integrated system model DIMERS-V2
as in figure 1. Vertical arrows between boxes represent
interaction processes at the common boundary of the
subsystems joined by them. Arrows going horizontally
into the boxes represent remote actions by fields defined
in the bulk of the subsystems.

core have only a finite number of relaxation times, like
the Maxwell or the Burgers rheology, there is no dif-
ficulty with time domain integration as an initial value
problem. In this case, the stress tensor is determined
by a differential equation in the time variable which
may be integrated along with the differential equations
governing the dynamics.

However, if a rheological model has a continuum of
relaxation times like the Zschau rheology, the stress
tensor is determined by an integro-differential equa-
tion. That would require significant changes in the
integration procedure of the whole system model.
For this reason, the rheological models dealt with in
DIMERS-V?2 are restricted to a finite number of relax-
ation times and a continuum of relaxation times in the
context of the modular approach must be a matter of
independent research.

The outer core shall be treated hydrodynamically in
Eulerian coordinates or, on a later stage, magneto-
hydrodynamically. The inner core may move and
rotate relative to the mantle. Moreover, the electri-
cal conductivity of the inner core has to be taken
into account if the outer core is treated magneto-
hydrodynamically.

These three subsystems of DIMERS-V2 are geometri-
cally defined as slightly elliptical shells with an ellip-
ticity varying with radius. In the theoretical descrip-
tion, this is reduced to spherical shells and a function
of radius in each shell which describes the ellipticity
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Figure 3: Structure of the integrated system model DIMERS-V2
as in figure 2 but with far-field interactions integrated
into field modules.

of that shell, i.e. these shells are regarded as deformed
spherical shells.

In DIMERS-V2, the ocean subsystem will be defined
as in DIMERS-V1. The atmosphere subsystem shall
be extended to represent a particular atmospheric dy-
namics. Time series of atmospheric pressure and wind
velocities from several different heights shall be as-
similated with this mechanical model of the atmo-
sphere. The new module of the tidal potential will pro-
vide the tidal potential on the basis of ephemeries.

Under such circumstances, scalar, vector and ten-
sor fields defined within these shells can be approxi-
mated by truncated series of spherical harmonic func-
tions with coefficients being polynomials in the radius.
Such fields, e.g. the displacement vector and the stress
tensor in mantle and inner core, the velocity vector and
dynamical pressure in the outer core or the gravita-
tional field in every shell, are part of the dynamical
variables to be integrated by DIMERS-V2.

Mathematical operations on these fields, like, e.g.,
multiplication by a scalar field, vector product, gra-
dient of divergence, are made available to the program
independent of the physical meaning of the fields and
of the shell where they are defined. Furthermore, gen-
eral integration routines are developed for differential
equations in such fields.

With these general tools at hand, the programming of
dynamics of the subsystems follows more or less di-
rectly the abstract formulation of the differential equa-
tions governing the dynamics. Thereby, the develop-
ment of dynamical models for the subsystems and their

integration into the modular system model is consider-
ably simplified.

The structure of the system model is conceptually sim-
plified if far-field interactions are integrated into field
modules representing physical fields. Figure 3 shows
the structure of DIMERS-V2 with field interactions in-
tegrated this way. A gravitational and a magnetic field
are displayed. The only function of these two mod-
ules is to sum all field contributions from the physical
subsystems for the gravitational or magnetic field re-
spectively.

3 Frames of reference in a modular
integrated model

A further concern relates to the frame of reference cho-
sen to describe the motions and fields within each of
the subsystems. It is compelling to have a single frame
of reference for the description of all distinct subsys-
tems. A description with different frames of reference
for different subsystems would necessitate coordinate
transforms between the different frames of reference
in calculating any interaction process. Therefore, in
this case, any subsystem must know the frames of ref-
erence of all its interaction partners which contradicts
the modular approach.

On the other hand, especially a description in La-
grangian coordinates, as intended for mantle and inner
core, requires a frame of reference in which all ma-
terial points do not move far away from their original
position. In principal, the strain tensor is not affected
if a frame of reference does not meet this requirement.
Then, however, a small strain tensor is calculated from
a very large displacement field which leads to numer-
ical instabilities. As the relative position and orien-
tation of mantle and inner core changes with time, no
single frame of reference can meet this requirement for
both subsystems.

The solution of this contradiction is to have one
‘global’ frame of reference for the whole system
model and, in addition, ‘internal’ frames of reference
deviating from the global one in some of the subsys-
tems. Then, the modules themselves are responsible
for the transformation from their internal frame of ref-
erence to the global one. In general, this transforma-
tion will be determined by a differential equation, as
well. It has to be integrated along with the dynamics
of the subsystem.



From the point of view of dynamics, for a descrip-
tion in Lagrangian coordinates, the ‘dynamical Tis-
serand system’ of a subsystem with origin placed in
the center of mass of that subsystem is best suited as
internal frame of reference. It is defined by the prop-
erty that the total angular momentum just as the to-
tal linear momentum of the motion of all mass ele-
ments of the subsystem relative to this frame of refer-
ence vanishes. Thereby, the mean velocity square of
all material points of the subsystem weighted by the
mass is minimized in this frame of reference. A dif-
ferent frame of reference satisfying the condition that
material points remain close to their original position
might, however, replace the dynamical Tisserand sys-
tem, if other arguments are in favour of it.

The global frame of reference, however, should be
chosen from the point of view of comparism of the
simulations with observations. Since observations of
Earth rotation are based on stations on the surface of
the Earth, this might reasonably be done by defining
the global frame of reference on the basis of surface
kinematics, for instance by means of the mean surface
vorticity.

4 Conclusions

The modular approach to Earth rotation dynamics de-
veloped in an earlier paper (JUTTNER AND PLAG,
1998) represents a novel way of thinking about this
problem. The validity and feasibility of the approach
was demonstrated in that paper for a first simplified
model of the mechanical Earth system.

The model is now being improved to have a com-
plex, more realistic structure. In the new version
DIMERS-V2, it comprises the subsystems of an inner
and an outer core, a mantle, an ocean and an atmo-
sphere. The action of the tidal potential is represented
by an additional module. The dynamics of the indi-
vidual subsystems are described by partial differential
equations for scalar, vector and tensor fields.

Such a modular model requires different frames of ref-
erence in the description of the distinct subsystems
which are called ‘internal’ to their respective subsys-
tem. Especially, in the case of a description in La-
grangian coordinates, the internal frame of reference
has to be adapted so that all material points remain
close to their original position.

Of course, the description of the modular model with
several different frames of reference internal to the

subsystems has to be supplemented by a ‘global’ frame
of reference in which integral quantities of the whole
system are defined. Furthermore, this global frame of
reference is a prerequisite for an unambiguous defini-
tion of subsystem interactions. Coordinate transforms
have to be supplied between any internal frame of ref-
erence and the global one but not for all the pairs of
distinct internal frames of reference.
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